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Abstract 

Objective To identify white matter fiber injury and network changes that may lead to mild cognitive impairment 
(MCI) progression, then a joint model was constructed based on neuropsychological scales to predict high-risk indi-
viduals for Alzheimer’s disease (AD) progression among older adults with MCI.

Methods A total of 173 MCI patients were included from the Alzheimer’s Disease Neuroimaging Initiative(ADNI) 
database and randomly divided into training and testing cohorts. Forty-five progressed to AD during a 4-year follow-
up period. Diffusion tensor imaging (DTI) techniques extracted relevant DTI quantitative features for each patient. In 
addition, brain networks were constructed based on white matter fiber bundles to extract network property fea-
tures. Ensemble dimensionality reduction was applied to reduce both DTI quantitative features and network features 
from the training cohort, and machine learning algorithms were added to construct white matter signature. In addi-
tion, 52 patients from the National Alzheimer’s Coordinating Center (NACC) database were used for external valida-
tion of white matter signature. A joint model was subsequently generated by combining with scale scores, and its 
performance was evaluated using data from the testing cohort.

Results Based on multivariate logistic regression, clinical dementia rating and Alzheimer’s disease assessment scales 
(CDRS and ADAS, respectively) were selected as independent predictive factors. A joint model was constructed 
in combination with the white matter signature. The AUC, sensitivity, and specificity in the training cohort were 0.938, 
0.937, and 0.91, respectively, and the AUC, sensitivity, and specificity in the test cohort were 0.905, 0.923, and 0.872, 
respectively. The Delong test showed a statistically significant difference between the joint model and CDRS or ADAS 
scores (P < 0.05), yet no significant difference between the joint model and the white matter signature (P = 0.341).

Conclusion The present results demonstrate that a joint model combining neuropsychological scales can be constructed 
by using machine learning and DTI technology to identify MCI patients who are at high-risk of progressing to AD.
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Alzheimer’s disease (AD) is a neurodegenerative dis-
ease that is progressive and highly disabling among older 
adults. Currently, there are no effective drugs that can 
significantly slow or cure the progression of AD [1]. Mild 
cognitive impairment (MCI) manifests in the precursor 
stage of AD, and approximately 10–12% of MCI patients 
progress to AD each year [2]. Early intervention during 
the MCI stage may potentially slow disease progression 
or maintain lifelong stability [3, 4]. Therefore, identifying 
MCI populations at high risk of progressing to AD is par-
ticularly important.

Over the past three decades, greater use of magnetic 
resonance imaging (MRI) has demonstrated that white 
matter is essential to subcortical structures. White 
matter is also closely related to cognitive function [5]. 
In particular, DTI technology has provided greater 
detail regarding the microstructure of white matter 
by evaluating the diffusion of water molecules along 
myelinated nerve fibers. Consequently, DTI quantita-
tive parameters such as fractional anisotropy (FA) and 
mean diffusivity (MD)are often used to quantify the 
degree of water molecule diffusion within white mat-
ter [6, 7]. DTI technology has shown that the structural 
integrity of brain white matter in individuals carrying 
genetic mutations associated with AD is lower than 
that in non-carriers, and it also indicates that early 
pathological changes are associated with AD [8]. How-
ever, neither FA nor MD can generate specific infor-
mation regarding possible roles for axonal, myelin, or 
other pathology [9]. Therefore, relying solely on routine 
DTI parameters may not be sufficient for fully charac-
terizing the impact of white matter neuropathology on 
cognitive function.

White matter appears to mediate a transfer of infor-
mation within distributed neural networks. Accordingly, 
damage that primarily affects white matter most promi-
nently results in cognitive slowing [10]. In addition, AD 
is characterized by the deposition of amyloid-beta and 
tau proteins in the brain, which reduces neural activ-
ity and disrupts communication between various brain 
regions. Therefore, AD may lead to abnormal connec-
tions between different brain regions. Graph theory net-
work analysis can be used to construct brain networks 
by regarding the brain as a small world, and relevant 
network features can be extracted [11, 12]. Subsequently, 
features of white matter brain networks can be com-
bined with DTI features, which reflect structural changes 
in white matter. This approach may be advantageous in 
assessing heterogeneous information concerning MCI 
progression. However, the numerous redundant features 
involved require a precise and reliable method to select 
these features further and facilitate MCI progression 
studies.

As a branch of artificial intelligence, machine learn-
ing can directly extract the most predictive features 
from labeled data with minimal human intervention 
[13].  Machine learning has been established as a more 
robust approach to extract reliable predictors and auto-
matically classifying different AD phenotypes [14]. 
Therefore, we hypothesize that combining fiber bundle 
features of white matter with their derived network prop-
erties features using emerging machine learning-based 
analysis methods can sensitively detect specific white 
matter changes in the early stages of preclinical AD. 
Moreover, these changes may accurately predict the pro-
gression of MCI to dementia.

Therefore, the primary aim of this study is to identify 
fiber bundle injuries and corresponding changes in white 
matter networks that may lead to disease progression in 
MCI patients. Secondly, we considered these features 
in combination with clinical features to generate a joint 
model to predict a high-risk population of MCI patients 
who are likely to progress to AD.

Demographic and clinical scale assessments
Data included in this study were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
website (https:// adni. loni. usc. edu/), specifically from 
the ADNI-2 and ADNI-GO datasets and the National 
Alzheimer’s Coordinating Center (NACC) databases 
(https:// naccd ata. org). Ethical review information 
regarding ADNI and NACC data is available on the 
website. A total of 173 patients with a baseline diagno-
sis of MCI from the ADNI database were included in the 
present study. Forty-five of these patients progressed to 
AD during a 4-year follow-up period and were classified 
as progression cases. The remaining 128 patients were 
classified as stable cases. Exclusion criteria include: DTI 
image quality is poor or the image cannot extract rel-
evant features; The patient’s follow-up examination time 
has not reached four years; Lack of evaluation of APOE4 
and various neuropsychological scales; The patient pro-
gressed to AD but recovered to MCI within four years. 
Specific demographic information can be found in sup-
plementary materials. Clinical data were collected, which 
included neuropsychological cognitive assessment scales 
information obtained from the Mini-Mental State Exami-
nation (MMSE), clinical dementia rating (CDR) [15], and 
Alzheimer’s Disease Assessment Scale (ADAS), as well as 
demographic data such as age, gender, education level, 
APOE4, and conversion time. In this study, we randomly 
divided 173 study subjects into a training cohort (n = 121) 
and a testing cohort (n = 52) in a 7:3 ratio, the training 
set was used to construct a model, and the test set was 
used to validate the reliability of the model. In addition, 
the 52 patients collected from the National Alzheimer’s 

https://adni.loni.usc.edu/
https://naccdata.org
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Coordinating Center (NACC)  database (https:// naccd 
ata. org) were used as an external validation set, of which 
15 patients progressed to AD during a 4-year follow-up 
period. They were classified as progression cases, while 
the remaining 37 patients were classified as stable cases; 
in addition, NACC database lacks clinical information on 
APOE4 and ADAS scales.

Data preprocessing and feature extraction
Initially, the FMRIB’s Diffusion Toolbox and DTIFit tools 
in FSL software (https:// fsl. fmrib. ox. ac. uk) were used for 
DTI images preprocessing, including format conversion, 
data quality detection, head movement, eddy current, 
and gradient direction correction, skull removal, obtain-
ing brain masks, calculating tensors to obtain FA, MD, 
axial diffusion (rAD), and radial diffusion (RD) param-
eter maps. Detailed information regarding the processing 
steps applied can be found in the supplementary mate-
rials section. Next, the JHU ICBM-DTI-81 white matter 
labels atlas was used to extract DTI general parameters 
[16, 17]. This atlas included forty-eight fiber bundles, we 
calculated diffusion tensor parameters for a single fiber 
bundle for each participant, including FA, MD, rAD, and 
RD values. A total of 192 features reflecting water mol-
ecule anisotropy for each patient were extracted. The 
information about the white matter label atlas and the 
acquisition of corresponding white matter features can 
be found in the supplementary materials.

DSI-studio software (https:// dsi- studio. labso lver. org/) 
was used to construct the DTI network. Specifically, a 
deterministic fiber tracking algorithm was applied with 
an enhanced tracking strategy to improve reproducibil-
ity. Details regarding the parameters used for fiber track-
ing with DSI-studio can be found in the supplementary 
materials section. The AAL2 atlas was used as a template, 
with specific brain regions identified as nodes. FA was 
the edge metric between the nodes, and it was used to 
construct a corresponding brain network matrix and to 
calculate network features. In total, 960 features reflect-
ing changes in the topological properties of the DTI brain 
network were extracted. Names of the specific features 
are provided in the supplementary materials section.

Feature dimensionality reduction
Dimensionality reduction methods were used to perform 
feature dimensionality reduction on the DTI feature set 
and the white matter network feature set in the training 
cohort. Considering the large number of feature sets and 
small sample sizes extracted in this study, we used the 
ensemble dimensionality reduction method for feature 
selection to ensure that the most representative features 
can be obtained. The ensemble methods applied included 
variance analysis, Max-Relevance and Min-Redundancy 

(mRMR), Least Absolute Shrinkage and Selection Oper-
ator (LASSO), and Gradient Boosting Decision Tree 
(GBDT) dimensionality reduction methods. Since fea-
ture dimensionality reduction based solely on statistics 
may retain meaningless features, resulting in overfitting 
of constructed signature, we conducted logistic regres-
sion analysis on the remaining features of dimensionality 
reduction in this study, screened out independent predic-
tive features reflecting MCI progression, and ultimately 
constructed the white signature based on the remaining 
features. Multiple logistic regression was applied to select 
significant features for model construction based on the 
remaining features of the two feature sets. Detailed steps 
regarding the dimensionality reduction performed are 
available in the supplementary materials section.

Construction of white matter signature
Machine learning algorithms constructed a white matter 
signature based on the selected features. Five machine 
learning classifiers were used: Support vector machine 
(SVM), Naive Bayes (NB), Decision Tree (DT), Random 
Forest (RF), and K-nearest neighbors (KNN). To avoid 
reporting biased results and limit overfitting, the machine 
learning algorithm uses a cross-validation program in 
the training cohort, including an external loop randomly 
dividing the training cohort (n = 121) into training sub-
groups and testing subgroups. A total of 50 random splits 
are used to evaluate the classification performance, and 
the difference between the 50 reconstructions lies in the 
division of the training and test subgroups. The other is 
a fivefold cross-validation internal loop for optimizing 
the algorithm’s hyperparameters to training subgroups. 
Cross-validation was repeated five times, once for each 
subsample, and the results of averaging five times yielded 
a single test value. The hyperparameter corresponding to 
the best performance test value is used to construct the 
large model in the outer loop. Finally, relative standard 
deviation (RSD) was used to quantify the performance 
and stability of the five machine learning algorithms. A 
minimum RSD value was selected as the optimal model 
construction method. RSD represents the absolute value 
of the coefficient of variation and is usually expressed as a 
percentage. The details of the calculation formula can be 
found in the supplementary material.

A correlation analysis was conducted to ascertain the 
reliability of the white matter signature and elucidate the 
potential mechanisms of their prediction. We investi-
gated the association between features used to construct 
joint models and neuropsychological scales. Briefly, the 
white matter signature output was a binary prediction 
of disease progression in individuals with MCI, defined 
as stable or progressive. Details regarding the machine 

https://naccdata.org
https://naccdata.org
https://fsl.fmrib.ox.ac.uk
https://dsi-studio.labsolver.org/
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learning aspect that was applied are provided in the sup-
plemental materials section.

Construction and performance evaluation 
of the prediction model
Based on the identified white matter signature, the back-
ward stepwise selection method with a stopping rule 
based on the Akaike information criterion (AIC) was 
used to select potential clinical predictive factors in the 
training cohort for constructing a joint prediction model 
using logistic regression [18]. The performance of the 
model generated was validated using data from the test-
ing cohort. In addition, the Delong test was used to verify 
the diagnostic efficacy difference between the joint model 
and other predictive factors. The Hosmer–Lemeshow 
test was applied to analyze the goodness of fit for the 
joint model, and the calibration curve was used to assess 
consistency between predicted and actual MCI progres-
sion. A decision curve analysis was performed to evaluate 
the clinical net benefit of the joint model. A prognostic 
index (PI) value was calculated for each subject using 

the joint model to assess the clinical efficacy of the joint 
model. The ROC curve Youden index threshold cor-
responding to the optimal critical value was used as the 
classification point. All cases from the training and test-
ing cohorts in the study were divided into a progression 
or stable subgroup according to their PI values, respec-
tively. Kaplan–Meier survival curve analysis was also per-
formed based on the ranking of the PI values obtained 
and was employed to examine differences in MCI con-
version rates during different periods. A flow chart of the 
research process performed is presented in Fig. 1.

Statistical analysis
All statistical analyses were performed using SPSS soft-
ware (version 17.0, IBM, Armonk, NY, USA) and R soft-
ware (version 3.5.0). The SPSS software was used to study 
the correlation between screened DTI features and net-
work features, and neuropsychological scales, as well as 
to screen independent predictive factors and construct 
joint model. R software was used in feature dimensional-
ity reduction, white matter biomarker construction, and 

Fig. 1 Research flow chart. After extracting relevant DTI attribute features and white matter structure network features (A), an ensemble 
dimensionality reduction method is used for dimensionality reduction (B). Then, different machine learning methods are used to construct 
a white matter signature (C). Finally, a joint model was built based on this signature combined with clinical features (D), and the model is validated 
and evaluated (E)
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related machine learning research. The normality of the 
continuous variables was analyzed by applying the Sha-
piro–Wilk test. Continuous variables are expressed as 
mean ± SD, while categorical variables are presented as 
frequency and percentage. The T-test, Mann–Whitney 
U-test, and Chi-square test were used to compare differ-
ences in categorical or continuous variables, with P < 0.05 
indicating statistical significance.

Results
Comparisons of clinical factors
In the training and testing group, significant differences 
were observed among the CDRS, ADAS, and MMSE 
scores in the two groups (P < 0.05). In the training group, 
there was a statistical difference in APOE4 (P < 0.05); 
in the test group, there was no statistical difference. In 
the validation set, there are significant differences in 
CDRS between the progression and stable MCI groups 
(Table 1).

Construction of a white matter signature
After applying an ensemble dimensionality reduction 
method, 18 features were selected from the training 
cohort. These included 12 white matter network features 
and 6 DTI quantitative features (Fig. 2). After performing 
multiple logistic regressions on these 18 features, 10 fea-
tures were selected to represent differences in brain white 
matter attributes between the MCI progression and sta-
ble groups. These included six brain network features 
and four DTI features (TableS4 and Fig. 3, respectively). 
Based on these ten features, a white matter signature was 
constructed using the SVM algorithm, with a minimum 
RSD value of 6.47 (Table 2). The white matter signature 
had an AUC value of 0.919, and its sensitivity and speci-
ficity values were 0.781 and 0.944 in the training dataset. 
The AUC, sensitivity, and specificity in the test group 
were 0.905, 0.923, and 0.872, respectively. The AUC, sen-
sitivity, and specificity in the validation group were 0.905, 
0.667, and 0.946, respectively(Fig.  5C). In addition, cor-
relations between these ten features and clinically rel-
evant features, including APOE4, CDRS, ADAS, and 
MMSE scores, were analyzed. Negative correlations were 
observed between betweenness_centrality_Precentral_R 
and CDR (r = -0.203, P = 0.025), and between pager-
ank_centrality_Temporal_Inf_R, betweenness_central-
ity_Precentral_R, and ADAS scores (r = -0.241, -0.27; 
P = 0.008, 0.003). Furthermore, MD_Cingulum (hip-
pocampus) R was found to negatively correlate with 
MMSE scores (r = -0.233, P = 0.001), while FA_Uncinate 
fasciculus L positively correlated with MMSE scores 
(r = 0.246, P = 0.007) (Fig. 4).

Construction of prediction model
A joint model was constructed using CDR and ADAS 
scores (which were selected as independent predictors 
based on multiple logistic regression) combined with an 
SVM white matter signature (Table 3). The AUC value of 
the joint model based on ten-fold cross-validation was 
0.938, with sensitivity and specificity values of 0.937 and 
0.91, respectively. In the test group, the AUC, sensitivity, 
and specificity of the joint model were 0.937, 0.923, and 
0.897, respectively. In both the training and test group, 
The Delong test demonstrated that the joint model 
exhibited a statistically significant difference compared 
to the CDRS and ADAS scores (P < 0.05) in the train-
ing and testing group. In contrast, there was no statisti-
cally significant difference between the joint model and 
the white matter signature (P = 0.341) (Fig.  5A, B)in the 
training and testing group. The optimal cut-off point cor-
responding to the Youden index on the ROC curve of the 
joint model was 0.2474, which was used to classify the 
data into low-risk and high-risk groups. The Log-rank 
test showed a significant difference between the survival 
curves of the low-risk and high-risk groups in the train-
ing and testing group (P < 0.001)(Fig. 6A, B).

Discussion
This study proposed a classification method based on 
white matter-derived structural and network properties 
to identify high-risk individuals for MCI progression. The 
white matter signature constructed using an SVM classi-
fier achieved a diagnostic accuracy of 0.919 for identify-
ing MCI progression to AD. This result demonstrates the 
superiority of machine learning in integrating different 
feature attributes. Moreover, the joint model constructed 
using white matter signature and multiple cognitive scale 
scores based on ten-fold cross-validation demonstrated 
good robustness and higher sensitivity and accuracy, 
indicating the potential value of a joint model approach 
for identifying MCI progression.

We observed that FA has more advantages than other 
DTI values, which is consistent with the results of many 
studies [19]. Furthermore, the uncinate fasciculus, for-
nix, middle cerebellar peduncle (MCP), and hippocam-
pal cingulum bundle (HCB) have been shown to predict 
the conversion from MCI to AD [20, 21]. These neural 
fiber bundles often connect to gray matter structures 
associated with memory function. Meanwhile, the hip-
pocampus and amygdala have been identified as imaging 
biomarkers for early identification of AD [22, 23]. In this 
study, the microstructure of the fornix has been associ-
ated with memory performance, which is consistent with 
the research of Rudebecket al. [24] and Fletcher et al. [25]. 
The MCP is part of the vermis of the cerebellum, which 
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has often been neglected in previous studies. Gupta et al. 
[26] observed that the high metabolism of the cerebellum 
is related to an increase in betweenness centrality (BC), 
indicating that the cerebellum plays an essential role in 
brain connectivity changes during AD. In addition, The 
right hippocampal cingulum bundle is consistent with 
the results of Stone et al. [27]. However, their model was 
based on selected specific white matter bundle regions 
and only achieved an accuracy of 0.75. In comparison, 
an accuracy of 0.938 was achieved in the present study, 
which may represent a benefit of the contributions from 
the white matter networks. Other studies have shown 
that the corpus callosum, inferior longitudinal fasciculus, 
and internal capsule are the best predictors of MCI to AD 
conversion [28]. Although the fiber bundles with lesions 
that were previously considered differ among many stud-
ies, the white matter lesions related to AD progression 
consistently tend to involve white matter fibers that are 
closely related to the AD-damaged cortex, such as the 
temporal and parietal lobes.

Traditionally, individual fiber bundle features have been 
analyzed. However, this approach does not adequately 
reflect the separation and integration between different 
brain regions while evaluating anisotropy scores. The 
human brain network has small-world properties [12, 
29]. The BC of the Frontal_Sup_Medial_L, Precentral_R, 
and Angular_R obtained from the DTI white matter 

network we constructed can serve as imaging indicators 
for an auxiliary diagnosis of AD. Among them, BC is a 
local node index that can quantify the amount of infor-
mation that may pass through any brain area. However, 
BC may also exaggerate node contributions. We observed 
that eigenvector centrality and PageRank also affect dis-
ease progression. Zhang et  al. have used graph theory 
and machine learning methods to distinguish MCInc 
from MCIc by combining sMRI and rs-fMRI indica-
tors [30]. With this strategy, an accuracy of 89.9% was 
achieved. Hojjatiet al. predicted MCI progression with 
only rs-fMRI, with an accuracy of 91.4% [31]. When we 
combined both DTI and brain network features, bet-
ter predictive performance of the resulting model was 
achieved compared with these previously reported mod-
els. This result might be due to differences in sequence 
selection and feature dimensionality reduction. However, 
although there are differences in the methods used to 
extract features, a high degree of similarity still exists in 
the final abnormal brain regions (e.g., frontal lobe, tem-
poral lobe, thalamus, right precentral gyrus, and angular 
gyrus). We hypothesize that the probability of informa-
tion transmission between these brain regions is high, 
and the corresponding brain regions are accordingly 
active. Thus, when the brain regions activated during 
attention tasks and memory extraction are damaged, it is 
possible that intrinsic differences already exist.

Fig. 2 Slide dot-chart of features after integrated dimension reduction. Group 1 represents the brain network features, while Group 2 represents 
the DTI features. The horizontal axis indicates the weights of each feature
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Zhou et  al. used DTI imaging to track fibers related 
to the hippocampus-temporal lobe and thalamus 
[32].  They observed that degenerative fibers detected 
by DTI indices, especially those associated with the 

hippocampus-temporal lobe, significantly correlated 
with cognitive scores compared to standard fibers. 
Similarly, the results of the present study also exhibit 
a correlation between the hippocampal cingulum and 
MMSE scores. This result is consistent with theirs. 
Additionally, it is worth noting that Zhou et  al. only 
selected regions of interest that exhibited a high level 
of resting-state functional connectivity with the hip-
pocampus as seeds to track fibers. In the present study, 
we expanded the scope to include the entire brain, and 
anisotropy values corresponding to specific fiber bun-
dles were specified. For example, the FA value of the left 
uncinate fasciculus positively correlated with MMSE 
scores. This result indicates that better integrity of the 
left uncinate fasciculus correlates with better cognitive 
performance. Overall, our results demonstrate that the 
cognitive ability of MCI and AD patients is affected by 

Fig. 3 Brain networks feature and DTI feature visualization. A shows a brain network diagram of white matter structure, where each line represents 
the network features between two brain regions (abbreviations can be found in auxiliary materials). B shows the position of white matter fiber 
bundles corresponding to DTI features

Table 2 Predictive performances of different machine learning 
methods

SD Standard deviation, RSD Relative standard deviation, KNN K-nearest neighbor, 
SVM Support vector machine, DT Decision tree

Model Mean value SD RSD (%)

Bayes 0.8195 0.0838 10.22

Forest 0.7581 0.1096 14.45

KNN 0.8204 0.0712 8.67

SVM 0.8998 0.0582 6.47

DT 0.6529 0.0958 14.67
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structural changes in multiple brain regions. Detecting 
these changes may facilitate new screening strategies to 
identify additional essential targets. Therefore, the DTI 
and network features in these important areas can be 
used as imaging indicators to assist in diagnosing and 
evaluating AD [33, 34].

To further improve the performance of the model, 
CDRS and ADAS were also included in this study, both 
of which are widely used in the assessment of cognitive 
change in clinical trials, and Wessels AM [35] found that 
ADAS-Cog appeared to be more valuable than CDR-SB 
in detecting differences in treatment groups. The diag-
nostic performance of ADAS in predicting MCI dis-
ease progression was higher than that of CDRS in this 
study, reflecting the higher accuracy of ADAS in cogni-
tive change. However, in this study, there was no differ-
ence in MCI between the stable and progressive groups 
of APOE4 in the test group. We speculate that this may 
be due to two reasons: firstly, the imbalanced distribu-
tion of data; Secondly, its effect on the chronic process 
of disease progression is not as significant as that of the 
disease itself. The novelty of the present study lies in the 
extracted series of features related to white matter. There 
have been similar studies of the cerebral cortex. For 
example, Gupta et al. used this method to study the cor-
tex, subcortical, and hippocampal regions and achieved 
a classification effect of 0.9333 for MCI progression 
[36]. We obtained similar results. However, while Gupta 
et  al. focused on a 2-year transition, we conducted a 
4-year follow-up observational study. Moreover, we addi-
tionally considered features of the white matter network. 
Therefore, the proposed white matter-derived model 

Fig. 4 Correlation analysis between significantly distinguishable important features and each independent predictor. The blue bars represent 
the histogram distribution of cognitive rating scales such as CDRS, ADAS, and MMSE, and the orange bars represent the histogram distribution 
of the final selected important DTI and network features

Table 3 Independent predictors of MCI status in univariate and 
multivariate logistic regression analysis

OR Odds ratio, CI Confidence interval, CDRS Clinical Dementia Rating Scale, ADAS 
Alzheimer’s Disease Assessment Scale, MMSE Mini-Mental State Examination, 
SVM Support vector machine, NA Not available because the variable is not 
included in multiple variables

Variable Univariate logistic 
regression

Multivariate logistic 
regression

OR (95%CI) P value OR (95%CI) P value

Gender 2.319 (0.748,7.188) 0.145 NA NA

APOE4 4.645 (1.313, 
16.431)

0.017* NA NA

Age (y) 1.097 (1.014, 1.186) 0.021* NA NA

Education 1.052 (0.863, 1.282) 0.617 NA NA

CDRS 2.081 (1.045, 4.144) 0.037* 2.104 (1.126,3.935) 0.02*

ADAS 1.18 (1.043, 1.335) 0.009* 1.244 (1.109,1.396)  < 0.001*

MMSE 0.841 (0.618, 1.144) 0.27 NA NA

SVM score 1.439 (1.114, 1.808)  < 0.001* 1.144 (0.726, 1.802)  < 0.001*
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may be more suitable for long-term follow-up observa-
tions and proves the critical impact of white matter on 
cognitive impairment [37, 38].  In particular, our results 
support that DTI and brain network features of essen-
tial regions in the brain can be used as auxiliary imaging 
indicators for diagnosing and evaluating AD cases.

There were limitations associated with this study. First, 
as a retrospective study, the simulation of retrospective 
statistics may have depended on too many assumptions. 
Secondly, further optimization of the prediction model is 
needed through better engineering design. A more com-
prehensive integration of other clinical data may improve 
the model’s performance. In addition, the higher the 
interpretability of machine learning models, the easier 

it is for people to understand why certain decisions or 
predictions are made. In the future, we will incorporate 
machine learning interpretability methods such as Shap-
ley additive explanation (SHAP) and local interpretable 
model-agnostic explanations (LIME) to enrich the mod-
els [39].

In summary, extracting multiple-dimensional features 
from white matter provides supplementary information 
regarding the progression of MCI. Furthermore, by com-
bining novel white matter features and clinical scores to 
build a prediction model, we can effectively and robustly 
identify individuals who are high-risk MCI patients. It is 
anticipated that this approach can facilitate the diagnosis 
of AD at an earlier stage.

Fig. 5 A and B show the diagnostic performance of the joint model and individual predictors in the training and testing cohorts. C shows 
the diagnostic performance of the SVM score model in the validation group

Fig. 6 A and B show significant differences in the Survival curve analysis of the low-risk and high-risk groups classified by the joint model 
in the training and testing group (p < 0.05)
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